Asynchronously Parallel Optimization Solver for Finding Multiple Minima Jeffrey Larson & Stefan M. Wild Mathematics and Computer Science Division ### Problem statement We want to find multiple, high-quality local minima of the nonlinear optimization problem when \mathcal{D} is compact, concurrent evaluations of f are possible, and relatively little is known about f. # Asynchronous workflow # Highlights - Multistart algorithm that considers all previously evaluated points when deciding where to start or continue a local optimization run. - Applicable to general optimization; its judicious use of function evaluations is especially suited for expensive derivative-free objectives. - Time to solution scales well even when the time to evaluate the objective is highly variable. - The algorithm has strong theoretical properties and performs well in practice. - Depends on the critical distance $$r_k = \frac{1}{\sqrt{\pi}} \sqrt[n]{\Gamma\left(1 + \frac{n}{2}\right) \operatorname{vol}\left(\mathcal{D}\right)} \frac{5\log|\mathcal{S}_k|}{|\mathcal{S}_k|}.$$ (1 ## APOSMM **input**: Local optimization method, random stream \mathcal{R}_S , tolerance ν . for $w = \{1, \dots, c\}$ do Give w a point from \mathcal{R}_S at which to evaluate f. for k = 0, 1, ... do Receive from worker w that has evaluated its point \tilde{x} . if $\tilde{x} \in A_k$ then if \tilde{x} 's run is complete then Add minimizer to X_k^* ; remove points from run from A_k . else Query local optimization method and add subsequent point from $ilde{x}$'s run to Q_L . Update H_k ; Update r_k using (1). Start local optimization method at points in H_k satisfying certain conditions; add the subsequent point(s) to Q_L . Kill runs with candidate minima within 2ν of each other, keeping the best run. Give w a point x' at which to evaluate f, either from Q_L or \mathcal{R}_S . # Samples: 6; r k: 0.689 Samples: 44; r k: 0.370 Samples: 45; r k: 0.367 Cluster 1 Cluster 2 Cluster 3 Starting point ### Theorem - If $f \in C^2$, - there is a distance $\epsilon > 0$ between local minima, - the local optimization method is strictly descent, - r_k is defined by (1), then APOSMM almost surely starts a finite number of local optimization runs and every local minimum is found or has a single local optimization run asymptotically converging to it. - J. Larson and S. M. Wild. Asynchronously parallel optimization solver for finding multiple minima. ANL/MCS-P5575-0316, 2016 - J. Larson and S. M. Wild. A batch, derivative-free algorithm for finding multiple local minima. Optimization and Engineering 17(1), 2016